Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Opt Express ; 32(7): 12200-12212, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571050

RESUMO

As an integral component of the laser interferometry measurement system, the tilt-to-length (TTL) coupling noise inside the telescope stands out as a critical noise factor that requires meticulous consideration. In the TianQin project, the non-geometric TTL-coupled noise inside the telescope should be less than 0.22 pm/Hz1/2. Additionally, the wavefront aberration RMS at the small pupil of the telescope needs to be better than 0.0065 λ. These requirements set for the telescope are exceptionally stringent. To address this challenge, this study aims to relax the wavefront aberration requirements by mitigating non-geometric TTL coupling noise, while ensuring the non-geometric TTL coupling noise remains below 0.22 pm/Hz1/2. By controlling the coupling aberration proportion, the wavefront aberration RMS at the small pupil of the telescope can be relaxed to 0.014 λ. Alternatively, optimizing the Gaussian beam waist radius can relax the wavefront aberration RMS to 0.016 λ. By simultaneously utilizing two optimization methods, the wavefront aberration at the small pupil of the telescope can be reduced to 0.033 λ, resulting in an impressive success rate of 91.15% in meeting the noise requirements.

2.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467611

RESUMO

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Assuntos
Fármacos Neuroprotetores , Traumatismos do Nervo Óptico , Animais , Camundongos , Comunicação Celular , Morte Celular , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia
3.
J Colloid Interface Sci ; 665: 413-421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537589

RESUMO

The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.


Assuntos
Micelas , Resiliência Psicológica , Caseínas , Emulsões , Água , Concentração de Íons de Hidrogênio
4.
Bone Res ; 12(1): 16, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443372

RESUMO

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.


Assuntos
Interocepção , Osteoartrite , Animais , Camundongos , Dinoprostona , Tornozelo , Encéfalo , Dor
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527593

RESUMO

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.

7.
Nat Commun ; 15(1): 1107, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321061

RESUMO

Hierarchical compartmentalization, a hallmark of both primitive and modern cells, enables the concentration and isolation of biomolecules, and facilitates spatial organization of biochemical reactions. Coacervate-based compartments can sequester and recruit a large variety of molecules, making it an attractive protocell model. In this work, we report the spontaneous formation of core-shell cell-sized coacervate-based compartments driven by spontaneous evaporation of a sessile droplet on a thin-oil-coated substrate. Our analysis reveals that such far-from-equilibrium architectures arise from multiple, coupled segregative and associative liquid-liquid phase separation, and are stabilized by stagnation points within the evaporating droplet. The formation of stagnation points results from convective capillary flows induced by the maximum evaporation rate at the liquid-liquid-air contact line. This work provides valuable insights into the spontaneous formation and maintenance of hierarchical compartments under non-equilibrium conditions, offering a glimpse into the real-life scenario.


Assuntos
Células Artificiais , Fenômenos Físicos , 60422 , Tamanho Celular , Veias
8.
ACS Appl Mater Interfaces ; 16(10): 13082-13090, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416690

RESUMO

Smart electromagnetic interference (EMI) shielding materials are of great significance in coping with the dynamic performance demands of cutting-edge electronic devices. However, smart EMI shielding materials are still in their infancy and face a variety of challenges (e.g., large thickness, limited tunable range, poor reversibility, and unclear mechanisms). Here, we report a method for controllable shielding electromagnetic (EM) waves through subwavelength structure changes regulated by the customized structure via a direct printing route. The highly conductive MXene ink is regulated with metal ions (Al3+ ions), giving superb metallic conductivity (∼5000 S cm-1) for the printed lines without an annealing treatment. The reversible tunability of EMI shielding effectiveness (SE) ranging from 8.2 dB ("off" state) to 34 dB ("on" state) is realized through the controllable modulation of subwavelength structure driven by stress. This work provides a feasible strategy to develop intelligent shielding materials and EM devices.

9.
Small ; : e2307603, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38213024

RESUMO

Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.

10.
Eur J Ophthalmol ; : 11206721241226469, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204151

RESUMO

PURPOSE: This study aimed to evaluate the impact of intravitreal triamcinolone acetonide (TA) administration after peeling of idiopathic epiretinal membranes (iERM) on both anatomical and visual outcomes, utilizing the ectopic inner foveal layer (EIFL) staging scheme. METHODS: In this retrospective case-control study, we analyzed 43 eyes from 43 patients diagnosed with iERM between June 2019 and December 2021. All participants were categorized into the TA or control groups based on administering intravitreal TA injection following ERM peeling. We thoroughly reviewed the clinical data, including the preoperative and postoperative best-corrected visual acuity (BCVA), central foveal thickness (CFT), and macular cube volume (VOL), with ERM stages classified according to the EIFL staging scheme. RESULTS: The study enrolled 22 eyes in the TA and 21 in the control groups. Following a mean follow-up period of 11.07 ± 2.02 months, noteworthy improvements in EIFL stages were observed in both cohorts (p < 0.01), but without significant distinctions between groups. In the TA group, 63.64% of eyes demonstrated improvements in EIFL stages, while the control group exhibited 76.19% (p = 0.37). At the final visit, both groups experienced a noteworthy reduction in the postoperative CFT and VOL (p < 0.05), coupled with significant improvement in BCVA (p < 0.01). No substantial differences appeared between the two groups concerning BCVA, CFT, and VOL (all p > 0.05). CONCLUSIONS: Our study suggested that concurrent intravitreal TA injection following ERM removal did not provide additional benefits regarding anatomical and visual improvement in iERM cases classified as Stages 2 and 3.

11.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293177

RESUMO

The dopaminergic system plays critical roles in Drosophila olfactory associative learning. In this study, we identified DAN-c1, a single dopaminergic neuron (DAN) in each brain hemisphere, that is both necessary and sufficient for Drosophila larval aversive associative learning. Compared to well-known roles of excitatory D1-like receptors in learning, the role of D2-like receptors (D2Rs) has not been fully investigated. We observed that D2Rs were expressed in DANs and the mushroom body (MB) in third instar larval brains. Knockdown of D2Rs in DAN-c1 by microRNA impaired aversive learning. Optogenetic activation of DAN-c1 during training led to an aversive learning deficit as well, indicating that D2R achieves its functions via autoreceptor inhibition. Interestingly, knockdown of D2R in MB impaired both appetitive and aversive learning. These results reveal that D2Rs in different brain structures play important but distinct roles in Drosophila larval olfactory learning, providing new insights into molecular mechanisms underlying associative learning.

12.
Acta Pharmacol Sin ; 45(3): 619-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37848553

RESUMO

N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 µM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Movimento Celular , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Linhagem Celular Tumoral , Proteínas Correpressoras/farmacologia , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
13.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790467

RESUMO

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone PGE2 concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of Cox2 or Pge2 in the osteoblast lineage cells or knockout Ep4 in sensory nerve blunts bone formation in response to mechanical loading. And sensory denervation also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces CREB phosphorylation in the hypothalamic ARC region to inhibit sympathetic TH expression in the PVN for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.

14.
BMC Cancer ; 23(1): 956, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814205

RESUMO

MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in bladder cancer and play important roles in cancer progression. This study aimed to investigate the biological role of miR-205-3p in bladder cancer. We showed that miR-205-3p was significantly down-regulated in bladder cancer tissues and cells. Moreover, overexpression of miR-205-3p inhibited bladder cancer progression in vitro. Then we confirmed that GLO1, a downstream target of miR-205-3p, mediated the effect of miR-205-3p on bladder cancer cells. In addition, we found that miR-205-3p inhibits P38/ERK activation through repressing GLO1. Eventually, we confirmed that miR-205-3p inhibits the occurrence and progress of bladder cancer by targeting GLO1 in vivo by nude mouse tumorigenesis and immunohistochemistry. In a word, miR-205-3p inhibits proliferation and metastasis of bladder cancer cells by activating the GLO1 mediated P38/ERK signaling pathway and that may be a potential therapeutic target for bladder cancer.


Assuntos
Lactoilglutationa Liase , MicroRNAs , Neoplasias da Bexiga Urinária , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia , Humanos , Lactoilglutationa Liase/metabolismo
15.
Theriogenology ; 212: 129-139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717516

RESUMO

Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.


Assuntos
Células Germinativas , Células-Tronco , Suínos , Animais , Diferenciação Celular/fisiologia , Células Germinativas/metabolismo , Gametogênese , Células Cultivadas
16.
J Hazard Mater ; 459: 132226, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549580

RESUMO

Zearalenone (ZEN) is a widespread and transgenerational toxicant that can cause serious reproductive health risks, which poses a potential threat to global agricultural production and human health; its estrogenic activity can lead to reproductive toxicity through the induction of granulosa cell apoptosis. Herein, comparative transcriptome analysis, single-cell transcriptome analysis, and weighted gene co-expression network analysis (WGCNA) combined with gene knockout in vivo and RNA interference in vitro were used to comprehensively describe the damage caused by ZEN exposure on ovarian granulosa cells. Comparative transcriptome analysis and WGCNA suggested that the tumor necrosis factor (TNF)-α-mediated mitogen-activated protein kinase 7 (MAP2K7)/ AKT serine/threonine kinase 2 (AKT2) axis was disordered after ZEN exposure in porcine granulosa cells (pGCs) and mouse granulosa cells (mGCs). In vivo gene knockout and in vitro RNA interference verified that TNF-α-mediated MAP2K7/AKT2 was the guiding signal in ZEN-induced apoptosis in pGCs and mGCs. Moreover, single-cell transcriptome analysis showed that ZEN exposure could induce changes in the TNF signaling pathway in offspring. Overall, we concluded that the TNF-α-mediated MAP2K7/AKT2 axis was the main signaling pathway of ZEN-induced apoptosis in pGCs and mGCs. This work provides new insights into the mechanism of ZEN toxicity and provides new potential therapeutic targets for the loss of livestock and human reproductive health caused by ZEN.


Assuntos
Zearalenona , Animais , Feminino , Camundongos , Apoptose , MAP Quinase Quinase 7 , Proteína Quinase 7 Ativada por Mitógeno , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Suínos , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Zearalenona/toxicidade
17.
ACS Nano ; 17(17): 16787-16797, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639562

RESUMO

An important goal for bottom-up synthetic biology is to construct tissue-like structures from artificial cells. The key is the ability to control the assembly of the individual artificial cells. Unlike most methods resorting to external fields or sophisticated devices, inspired by the hanging drop method used for culturing spheroids of biological cells, we employ a capillary-driven approach to assemble giant unilamellar vesicles (GUVs)-based protocells into colonized prototissue arrays by means of a coverslip with patterned wettability. By spatially confining and controllably merging a mixed population of lipid-coated double-emulsion droplets that hang on a water/oil interface, an array of synthetic tissue-like constructs can be obtained. Each prototissue module in the array comprises multiple tightly packed droplet compartments where interfacial lipid bilayers are self-assembled at the interfaces both between two neighboring droplets and between the droplet and the external aqueous environment. The number, shape, and composition of the interconnected droplet compartments can be precisely controlled. Each prototissue module functions as a processer, in which fast signal transports of molecules via cell-cell and cell-environment communications have been demonstrated by molecular diffusions and cascade enzyme reactions, exhibiting the ability to be used as biochemical sensing and microreactor arrays. Our work provides a simple yet scalable and programmable method to form arrays of prototissues for synthetic biology, tissue engineering, and high-throughput assays.


Assuntos
Células Artificiais , Transporte Biológico , Comunicação Celular , Difusão , Ensaios de Triagem em Larga Escala , Água
18.
J Environ Manage ; 345: 118778, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591105

RESUMO

Sodium dimethyl dithiocarbamate (SDD) is widely used for stabilizing heavy metals to minimize pollution from air pollution control (APC) residues derived from municipal solid waste incineration. However, the effect of environmental conditions on heavy metal leaching from SDD-stabilized APC residues remains unknown. Therefore, this study aimed to evaluate the durability of SDD-stabilized APC residues and determine the relationship between heavy metal leaching and environmental factors, including pH, temperature, and oxygen. The results revealed that accelerated SDD decomposition and the decline in durability of SDD-stabilized APC residues were caused by acidic and aerated conditions and temperatures above 40 °C. A decrease in pH from 12.25 to 4.69 increased the Cd and Pb concentrations in SDD-stabilized APC residue leachate from below detection (0.002 mg/L) to 1.32 mg/L and 0.04 mg/L to 3.79 mg/L, respectively. Heating at 100 °C for 2 d increased the Cd and Pb concentrations from below detection (0.002 mg/L and 0.01 mg/L) to 2.96 mg/L and 0.47 mg/L, respectively. Aeration for 5 d increased the Cd and Pb concentrations from below detection to 0.09 mg/L and 0.49 mg/L, respectively. The decline in durability was attributed to acid hydrolysis, thermal decomposition, and oxidative damage of SDD, resulting in breakage of the chelated sulfur-metal bond, which was confirmed by the decrease in the oxidizable fraction of heavy metals and the SDD content. This study improves the understanding of the factors contributing to the decline in durability of heavy metals in SDD-stabilized APC residues, which is important for ensuring the long-term stabilization and environmental safety of these residues.


Assuntos
Poluição do Ar , Metais Pesados , Eliminação de Resíduos , Incineração , Eliminação de Resíduos/métodos , Resíduos Sólidos , Dimetilditiocarbamato , Cádmio , Chumbo , Metais Pesados/química , Sódio , Cinza de Carvão , Carbono
19.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37502873

RESUMO

The progressive death of mature neurons often results in neurodegenerative diseases. While the previous studies have mostly focused on identifying intrinsic mechanisms controlling neuronal survival, the extracellular environment also plays a critical role in regulating cell viability. Here we explore how intercellular communication contributes to the survival of retinal ganglion cells (RGCs) following the optic nerve crush (ONC). Although the direct effect of the ONC is restricted to the RGCs, we observed transcriptomic responses in other retinal cells to the injury based on the single-cell RNA-seq, with astrocytes and Müller glia having the most interactions with RGCs. By comparing the RGC subclasses with distinct resilience to ONC-induced cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with other retinal cells, suggesting that these RGCs are intrinsically programmed to foster more communication with their surroundings. Furthermore, we identified the top 47 interactions that are stronger in the high-survival RGCs, likely representing neuroprotective interactions. We performed functional assays on one of the receptors, µ-opioid receptor (Oprm1), a receptor known to play roles in regulating pain, reward, and addictive behavior. Although Oprm1 is preferentially expressed in intrinsically photosensitive retinal ganglion cells (ipRGC), its neuroprotective effect could be transferred to multiple RGC subclasses by selectively overexpressing Oprm1 in pan-RGCs in ONC, excitotoxicity, and glaucoma models. Lastly, manipulating Oprm1 activity improved visual functions or altered pupillary light response in mice. Our study provides an atlas of cell-cell interactions in intact and post-ONC retina, and a strategy to predict molecular mechanisms controlling neuroprotection, underlying the principal role played by extracellular environment in supporting neuron survival.

20.
J Physiol ; 601(16): 3585-3604, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421377

RESUMO

The neuropeptide orexin is involved in motor circuit function. However, its modulation on neuronal activities of motor structures, integrating orexin's diverse downstream molecular cascades, remains elusive. By combining whole-cell patch-clamp recordings and neuropharmacological methods, we revealed that both non-selective cationic conductance (NSCC) and endocannabinoids (eCBs) are recruited by orexin signalling on reticulospinal neurones in the caudal pontine reticular nucleus (PnC). The orexin-NSCC cascade provides a depolarizing force that proportionally enhances the firing-responsive gain of these neurones. Meanwhile, the orexin-eCB cascade selectively attenuates excitatory synaptic strength in these neurones by activating presynaptic cannabinoid receptor type 1. This cascade restrains the firing response of the PnC reticulospinal neurones to excitatory inputs. Intriguingly, non-linear or linear interactions between orexin postsynaptic excitation and presynaptic inhibition can influence the firing responses of PnC reticulospinal neurones in different directions. When presynaptic inhibition is in the lead, non-linear interactions can prominently downregulate or even gate the firing response. Conversely, linear interactions occur to promote the firing response, and these linear interactions can be considered a proportional reduction in the contribution of depolarization to firing by presynaptic inhibition. Through the dynamic employment of these interactions, adaptive modulation may be achieved by orexin to restrain or even gate the firing output of the PnC to weak/irrelevant input signals and facilitate those to salient signals. KEY POINTS: This study investigated the effects of orexin on the firing activity of PnC reticulospinal neurones, a key element of central motor control. We found that orexin recruited both the non-selective cationic conductances (NSCCs) and endocannabinoid (eCB)-cannabinoid receptor type 1 (CB1R) system to pontine reticular nucleus (PnC) reticulospinal neurones. The orexin-NSCC cascade exerts a postsynaptic excitation that enhances the firing response, whereas the orexin-eCB-CB1R cascade selectively attenuates excitatory synaptic strength that restrains the firing response. The postsynaptic and presynaptic actions of orexins occur in an overlapping time window and interact to dynamically modulate firings in PnC reticulospinal neurones. Non-linear interactions occur when presynaptic inhibition of orexin is in the lead, and these interactions can prominently downregulate or even gate firing responses in PnC reticulospinal neurones. Linear interactions occur when postsynaptic excitation of orexin is in the lead, and these interactions can promote the firing response. These linear interactions can be considered a proportional reduction of the contribution of depolarization to firing by presynaptic inhibition.


Assuntos
Endocanabinoides , Neuropeptídeos , Orexinas/farmacologia , Endocanabinoides/farmacologia , Neurônios/fisiologia , Receptores de Canabinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...